Chapter 1

Basics of Geometry

Section 2
 Points, Lines, and Planes

GOAL 1: Using Undefined Terms and Definitions

Point: a place in space; a dot [UNDEFINED TERM]

Line: two (or more) points connected; extends forever in both directions; straight

Plane: 2D surface that extends infinitely in all directions

Collinear points: 3 or more points on the same line

Coplanar points: 3 or more points on the same plane

Example 1: Naming Collinear and Coplanar Points

a. Name three points that are collinear.

D, E, F
a. Name four points that are coplanar.

G, D, E, F
a. Name three points that are not collinear.

H, G, D

Consider the _line_ $A B$ (symbolized by $\overleftrightarrow{A B}$).
The ___line segment___ or __segment__ $A B$ (symbolized by $\overline{A B}$) consists of the __endpoints_ A and B, and all points on $\overleftrightarrow{A B}$ that are between A and B.

The __ray__ $A B$ (symbolized by $\overrightarrow{A B}$) consists of the ____endpoint___ A and all points on $\overleftrightarrow{A B}$ that lie on
The same side of A as point B.

Note that $\stackrel{\rightharpoonup}{A B}$ is the same as $\stackrel{\rightharpoonup}{B A}$, and $\overline{A B}$ is the same as $\overrightarrow{B A}$. However, $\overrightarrow{A B}$ and $\overrightarrow{B A}$ are NOT the same. They have different initial points and extend in different directions.

If C is between A and B, then $\overrightarrow{C A}$ and $\overrightarrow{C B}$ are ___opposite rays \qquad .

Like points, segments and rays are collinear if they lie on the same line. So, any two opposite rays are collinear. Segments, rays, and lines are coplanar if they lie on the same plane.

Line: see slide 3

Line segment/segment: connects two points; ends on both sides

Endpoints: ending/starting point of segment

Ray: connects two points; ends on 1 side, extends infinitely in the other direction

Initial point: starting point for a ray

Opposite rays: two rays with the same initial point, extend in opposite directions

Example 2: Drawing Lines, Segments, and Rays

Draw three noncollinear points, J, K, and L. Then draw $\leftrightarrows \mathbb{J K}, \overline{K L}$, and $\overrightarrow{\mathrm{LJ}}$. **all 3 points cannot be in same line; 2 of the 3 can be

Example 3: Drawing Opposite Rays

Draw two lines. Label points on the lines and name two pairs of opposite rays.

GOAL 2: Sketching Intersections of Lines and Planes

Note:
Two or more figures intersect if they have one or more points in common. The intersection of the figures is the set of points the figures have in common.
*two lines \rightarrow point
*two planes \rightarrow line

Example 4: Sketching Intersections

Sketch the figures described.
a. A line that intersects a plane in one point

b. two planes that intersect in a line

